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Abstract 

A relatively simple two-body and three-body interactional mixing model is used to derive 
expressions for the mathematical representation of experimental solute solubilities and 
activity coefficients in binary solvent mixtures. The derived expressions are identical with 
those based upon the combined NIBS/Redlich-Kister model, and enable solute 
solubility/activity coefficient data to be expressed as a mole fraction average of measured 
solute properties in both pure solvents plus a term involving a power series expansion in 
solvent composition. 

INTRODUCTION 

Knowledge of infinite dilution activity coefficients is required in the 
qualitative and quantitative analysis of separation processes such as 
liquid-liquid extraction, extractive distillation and azeotropic distillation. 
In recent years considerable effort has been devoted to the design of better 
instrumentation, establishment of data bases and development of predic- 
tive methods specifically for infinite dilution properties. Several expressions 
have been suggested for predicting vapor-liquid equilibria in dilute solu- 
tions using pure component properties and binary parameters determined 
from experimental data over the entire binary composition range. The 
more sophisticated solution models, which assume preferential solvation 
and/or local compositions, require that at least two parameters be calcula- 
ble for each contributing sub-binary system. 

Prediction of solid-liquid equilibria and solute solubilities in mixed 
solvents is also possible; however, the number of available predictive 
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equations is significantly reduced. The nature of solubility determinations 
restricts the number of adjustable parameters to no more than one per 
binary mixture, as there is only a single data point associated with the 
saturated solute in a pure solvent. The nearly ideal binary solvent (NIBS) 
model [l-3] developed previously provides a relatively simple method for 
estimating the excess partial molar properties of a solute Zr at infinite 
dilution in a binary solvent (components B and C) 

zr =fi(ZF)u +f~(z& - I-*(x$, +x&J1z,“, (1) 

f,” = 1 -f; =xjr,/(xjr, + x;r,) (2) 
in terms of a weighted mole fraction average of solute properties in the two 
pure solvents (Zr)n and <ZF)c, and a contribution owing to the unmixing 
of the solvent pair by the presence of the solute. Equation (1) (with 
Z”” = G”) gives accurate predictions for naphthalene, iodine, p-benzo- 
quinone, benzil, p-dibromobenzene, carbazole, thianthrene, benzoic acid, 
tolylacetic acid, and phenylacetic acid solubilities in systems of nonspecific 
interactions when molar volumes are used as weighting factors (Ii = V;> 
[3-81. Approximation of weighting factors with molecular surface areas 
enables eqn. (1) to provide accurate predictions for anthracene [9] and 
pyrene [lo] solubilities in binary solvent mixtures containing benzene. 

More recently, both the NIBS model and a modified version of the 
Wilson equation [ll] have served as the point of departure fo the mathe- 
matical representation of solute solubility as a function of solvent composi- 
tion [12,13] 

In XE’=Xi ln(Xz’), +Xz ln(Xf’), +X:X,0 i S,(Xz -Xz)i (3) 
i=O 

and 

ln(a,“‘id/Xpt) = 1 - 
Xi{ 1 - ln[ a,“‘“/( Xf'),] ) 

X0 + XOA=ij 
B c BC 

X$1 - ln[ .,lid/( Xpt)o]} 
- 

x;IF($n + x0 C 
(4) 

with the various Si and A$ coefficients computed from measured solubility 
data via least-squares analysis. The symbols are defined at the end of the 
manuscript. To date ‘eqn. (3) has been successfully used to describe an- 
thracene solubilities in numerous binary alkane + dibutyl oxalate, alkane + 
carbon tetrachloride, alkane + dibutyl ether, alkane + aromatic hydrocar- 
bon and alkane + dimethyl adipate mixtures, and carbazole solubilities in 
binary alkane + dibutyl ether and alkane + tetrahydropyran solvent mix- 
tures covering up to a 300-fold range in mole fraction solubilities [12-141. I 
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have been unable, though, to derive its basic mathematical form from any 
of the known two-body interactional solution models. 

Hwang and coworkers [15] recently presented a thermodynamic mixing 
model that includes contributions from both two-body and three-body 
interactions. The derived expressions were found to correlate exactly binary 
excess free energy data, and also to predict fairly accurately ternary free 
energies of several aqueous-organic systems. During the course of extend- 
ing Hwang and coworkers’ two/three-body interactional model to other 
thermodynamic properties, I noted that through appropriate algebraic 
manipulations and simplifying assumptions it was possible to transform the 
model’s infinite dilution activity coefficient expression into eqn. (3). In this 
paper I present the formal derivation of the combined NIBS/Redlich-Kis- 
ter mathematical representation (eqn. (3)) based upon a two/three-body 
interactional model. To familiarize readers with the procedure used in the 
derivation of eqn. (31, I will first briefly review the interaction model of 
Hwang et al. 

DEVELOPMENT OF BINARY MIXING MODEL AND CORRELATION EXPRES- 
SIONS 

Binary mixtures contain two-body interactions (e.g., A-A, B-B and A- 
B), and three-body interactions (es., A-A-A, B-B-B, A-A-B and A-B- 
B) to a much lesser extent. Higher-order interactions are generally negligi- 
ble. Random mixing requires that internal energy contributions from all 
two-body interactions be 

U,(2) = x;uAA +x&a, + 2x,x,u,, 

and that those from all three-body interactions be 

U,(3) = xp7u- + x$4,,, + 3X*X,( X*z& + X&,,) 

(5) 

given as a simple summation over all possible interactions, and that the 
number of each type of interaction must be proportional to a weighted 
mole fraction product. Molecular interactions between molecules A and B 
are counted twice as either A-B or B-A, whereas ternary interactions are 
triply degenerate. For simplicity the present model is restricted to molecules 
of comparable size so that Raoult’s law will represent a good approxima- 
tion of the entropic contribution to the overall free energy of mixing. 

The apparent three-body interactional parameters u&a and uzan are 
not purely cross-parameters except in infinitely dilute solutions. In a 
non-random mixture, some AAA and BBB clustering may occur along with 
mixed collisions. Hence the apparent interactions are concentration depen- 
dent. The empirical forms for the apparent interactions at infinite dilution 
are assumed to be 

‘LB = ‘AAB (1 - CIXA2) 

‘:BB = ‘ABB (1 - c&) 

(7) 
(8) 
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where ci and c2 denote constants. Through suitable mathematical manipu- 
lation, eqns. (6)-(8) can be combined 

u,(3) =x$- +x;unnB +x*x, 

x [3(X‘44AB +X&La) -X.4%_&% -&3%Bl 
=x~u,,+X~u,,,+x*X,[ x*(3u,,-uAA‘4) 

+Xn(3uAi3n - Unnn) - 3u_c,x; - 3u,c,x;] (9) 

The compositional dependence can be further simplified by assuming that 

3u,, - u- = 3u,, - U*nn = 8uo,AB) (10) 

where &.Q,~) eliminates the effect of pure three-body interactions uAAA 

and ‘BBB from mixed interactions. The molar internal energy u, involves 
the sum of all molecular interactions in solution 

% = %l(2) + %(3) 
=mUAA + UAAA) +xixUBB + UBBB) +&xB 

x [2UAB + q3,AB) - 3UAABC& - 3u,,,c2x,3] 
=X,(u,, + UAAA) +Xe(u,, + UBBB) +xAxB 

x [2UAB + 8U(3,AB) - @AA + UAAA) - (UBB + UBBB) 

- 3UAABCJ,3 - 3UABBC&l 

= XAEAA + XBEBB +xAxB 

x ( l AB - EAA - EBB - 3uAABc,x,3 - 3uABB 2 c x’) B (11) 

where EM c Um i-U_, EBB s UBB •k UBBB, and EM G 2U, i- 6Ug,q 
Recalling that the model assumes that the entropic contribution is 

described by Raoult’s law, u, is converted to the excess Helmholtz energy 

A” =X,X,( a, + aiX2 + a,X;) (12) 

by subtracting ( XAeAA + Xn~nn) from urn; with a0 = -(Ed + EBB - EM), 
a, = -3~4~c,, and a2 = -3umB c 2. A more rigorous treatment involving 
chemical lattice theory and coordination numbers is presented elsewhere 
[15]. Similarly, the model yields the relation between excess Helmholtz and 
Gibbs functions 

G” =Aex - ( AV)2/2pV+ . . . (13) 

where AV denotes volume change on mixing, p is the compressibility and 
G”” is the excess Gibbs free energy. If (AV12/2/3V and higher-order terms 
are negligible, as will often be the case for pressures not too far removed 
from 1.0 atm, then the Gibbs and Helmholtz free energies are identical. 

Aex = G” =X,X,( a, + UiXi + ~2~x2) (14) 



DEVELOPMENT OF TERNARY MIXING MODEL AND PREDICTIVE EXPRES- 
SIONS 

The basic model presented in the preceeding section can be easily 
extended to ternary and higher-order multicomponent systems. In the case 
of ternary mixtures, the internal energy is described in terms of six binary 
interactions 

z&(2) =x&AA + x;unJj +x&.. + 2x,xnu,, 

+ 2x,x+,, + 2x,x,u,, 

and ten ternary interactions 

(15) 

u,(3) = x~uAAA + Xj$nBB + x&Accc + 3X*X,( X*u& + X*2&n) 

+ 3XAXC(XAGAC +X&cc) + 3XBXC(X&K +X&cc) 

+ 6XAXBXCGBC (16) 

which result from molecular interactions between similar (uii> and dissimi- 
lar (uiij and uLjk) mixture components. Using steps analogous to those 
employed in the case of binary mixtures, and remembering that in the 
ternary mixture the mole fraction compositions are interrelated via X, = 
1 -X, -XC, we rewrite eqn. (14) as 

u,(3) = xzuAAA + X;UnBB +x&cc +x,x, 

x [(X, + x,)su(3#Q, - 3u&&;AB)x; 

-3u ..nP~X;] +X,X, 

x [(x, +x&h,,&., - 3u,,e~*%; - 3u,,,e~*%;] +X,X, 

x [(x, +&)h@JC) - 3u,,,c$Bc’Xj?j - 3u,,,c$Bc’X;] 

+ 6X,X,X,&, (17) 

In order to reduce the compositional dependence of the terms in the 
parentheses, one first assumes that 

3u& = u- + Unnn + UCCC + 1/2( au, + 6u,, + ?k,,) (18) 

and then uses the resulting approximation to expand eqn. (10) to 

6Uij = (3Uiii - Uiii) - Uiii - ujjj 

= (3Uijj - Ujjj) - Uiii - ujjj 

= su3,ij - uiii - ujjj (19) 

ternary systems. Direct substitution of eqn. (19) into eqn. (18) yields 

UABC = 1/6[ (3U- - UAAA) + (3”~~~ - Uccc) + (3u~~~ - 43B~)l 

= ‘i6[ SUQ,AB) + s”(3,AC) + $3,BC)] (20) 
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a mathematical relationship between the three-body ARC interactional 
term and the various binary combinations, which should be applicable in 
the case of small, dissimilar three-body interactions. 

After suitable algebraic manipulation of eqns. (15)-(201, the internal 
energy and excess molar Gibbs free energy of the ternary mixture can be 
expressed by the equations 

u, = X*EAA + XBEBB +X&c 

+X,X,( EAn - EM - EBB - 3U,,cIAB)X; - 3u,,4*“‘X;) 

+x*x,( EAC - EM - Ecc - 3U,cc$*c)x; - 3UAccc’3^c’x;) 

+ XnXc( l nc - EBB - Ecc - 3u~ncc$~~)Xi - 3U,~cc$~~)X~) (21) 
G W*nc) = X,X, (a(,AB) + a(*n)x; + u(2AB)x;) 

+ XAXC( a(,AC) f a~*c’x~ + fzl”“‘x;) 

+x,x,( a$=’ + LPx; + u(zBc)x;) 1 (22) 

Again the entropic contribution to the configurational entropy has been 
described in terms of Raoult’s law, and the various eii and l ij are defined 
in accordance with the binary reduction. The nine a coefficients can be 
obtained by either curve-fitting binary excess free energy data or by 
parameterizing experimental ternary data. From an operational standpoint, 
the former method is preferred in that experimental ternary data are 
relatively scarce, and more importantly it is far less time-consuming to 
compute three sets of three parameters each than one large set of nine 
parameters. Our preliminary observations [16], along with unpublished 
calculations on over 75 ternary systems [17], indicate that eqn. (22) will be 
applicable to other thermodynamic properties such as excess volumes and 
enthalpies. 

DERIVATION OF THE COMBINED NIBS/REDLICH-KISTER EXPRESSION OF 
SOLUBILITY 

Solubility is related to chemical potential (pi) rather than to the integral 
excess Gibbs free energy of mixing. The expression for the solubility of a 
crystalline nonelectrolyte solute in binary solvent mixture is derived by first 
adding the ideal contribution of the Gibbs free energy of mixing based 
upon Raoult’s law to eqn. (221, and then differentiating the resulting 
equation 

G “‘=RT[n, In XA+nn In Xn+nc In Xc] +nAXn 

x [ ubm) + uiAB)Xi + u’,“)XG] + n,X, [ ah*‘) + CZ$*~)X~ + u$*‘)XJ 

+ n,X, [ u(,~~) + u\Bc’Xz + uc,“c)X~] (23) 
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with respect to the number of moles of solute, ,_&A - & = @Gmk/&ZA), 
while holding T, P, ng and no constant. Performing this differentiation, 
one obtains the following expression 

pA - pi= RT In us\olid = RT In Xp’ + Xi[ ahABI + u(;\B)xi3] 

+ xc”[ a’jC’ + a$AC)x~3] -x;xz 

x [up + 4a~nc)x~ + 4&=‘X&y3] (24) 

provided that the solute solubility is sufficiently small so that XFt = 0 and 
Xi0 =Xi. Mole fractions refer to the initial composition of the binary 
solvent mixture calculated as if the solute were not present, and uFlid 
denotes the activity of the solid solute. This activity, defined as the ratio of 
the fugacity of the solid to the fugacity of the pure subcooled liquid, is 
found by integrating the molar enthalpy of fusion (AHE) from the normal 
melting point Tmp to the desired solution temperature. 

ln Gfid = / ( T AHp/RT*) dT 
T mp 

(25) 

Not too much emphasis is placed upon this particular solute standard state. 
As will be shown in the next few paragraphs, the standard state is common 
for any given crystalline solute dissolved in binary solvent mixtures and 
both pure solvents, and can be cancelled mathematically from the final 
solubility expression. 

Inspection of eqn. (24) reveals that, for model systems obeying this 
expression, the a$$) and a?‘) interaction parameters can be eliminated via 
the saturation solubilities in the two pure solvents <Xz’>n and (XF’lc. 

RT ln[ uzlid/( Xrt)B] = ubAB) + u$~) (26) 

RT ln[ uTlid/( XEt)c] = ubAC) + uiAC) (27) 

Direct substitution of eqns. (26) and (27) into eqn. (24), followed by 
algebraic rearrangement, enables one to express solute solubility in binary 
solvent mixtures as a simple mole fraction average of the measured solute 
properties in both pure solvents minus a term involving a power series 
expansion in solvent composition 

RT In Xf’ = XiRT ln( X2’), + XZRT ln( Xft)C -X:X, 

where 

x [P, + PIXi + p,x,o* + P,Xj”] (28) 

P,, = &‘JQ + 3&‘o’ + u(,BC) + 4u$no’ 

P, = &W _ 3&C’ _ I2@c’ 

P* = a$-’ + u’2AC’ + 12@o’ 

P3 = @o) _ 4@C) 
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Readers will note that the activity of the solid solute, aTlid, appeared on 
the left- and right-hand sides of eqn. (28) as - RT In aTlid and - (Xz + X{> 
RT In azlid, respectively, and has thus been cancelled mathematically. The 
power series expansion is third-order in Xi, and can be easily transformed 
into the Redlich-Kister form (see refs. 18-20 for details). 

RT In Xr’ = XiRT ln( XTt)n + X$RT ln( Xp’), 

(29) 
i=O 

Equation (29) is mathematically identical to our combined 
NIBS/Redlich-Kister expression. Although it is possible to relate the 
various Si coefficients back to two- and three-body interactional energies, I 
prefer to view the actual numerical values as “curve-fit” parameters 
determined via least-squares analysis of solubility data. 

The mathematical derivation of eqn. (3) from a two/three-body interac- 
tional mixing model provides some theoretical justification for our com- 
bined NIBS/Redlich-Kister approach. Readers will recall that eqn. (3) 
was first suggested as a mathematical representation for describing how 
solute solubility varies as a function of binary solvent composition. No 
theoretical justification was offered in the original article [12], nor in the 
followup investigation [13] involving the ability of eqn. (3) to describe 
accurately carbazole solubilities in binary alkane + dibutyl ether and alkane 
+ tetrahydropyran mixtures. I hope that by providing a theoretical basis for 
the combined NIBS/Redlich-Kister expression I will encourage other 
research groups to adopt this particular mathematical representation in 
future data presentations involving either solute solubilities, or infinite 
dilution solute activity coefficients (In Xzt replaced by In Q, or infinite 
dilution solute enthalpies of solution (In Xpt replaced by AH~‘n~m) in 
binary solvent mixtures. 
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LIST 

solid a A activity of the solid solute, defined as the ratio of the fugacity of 
the solid to the fugacity of the pure subcooled liquid 

&K) 
I adjustable “curve-fit” parameter in the two/three-body interac- 

tional mixing model for the JK binary system 

f,“, fC weighted mole fraction composition of the binary solvent mixture, 
calculated as if the solute were not nresent 



79 

Gc excess molar Gibbs free energy of the binary solvent mixture 
based upon Raoult’s law 

AHpfu molar enthalpy of fusion of the solute 
A Hrr”F molar enthalpy of solution of the solute at infinite dilution 

si adjustable “curve-fit” parameter in the combined NIBS/ 
Redlich-Kister mathematical representation 

uij two-body interactional energy involving molecules i and j 

uiij three-body interactional energy involving molecules i, i and j 

xi mole fraction composition of component i 
Xp saturated mole fraction solubility of the solute 
CxF’>i saturated mole fraction solubility of the solute in pure solvent i 
Xi, Xc0 mole fraction composition of the binary solvent mixture, calcu- 

lated as if the solute were not present 

ri weighting factor of component i used in the NIBS model 

PA chemical potential of the solute 
m infinite dilution activity coefficient of the solute 

adjustable “curve-fit” parameter in the modified Wilson mathe- 
matical representation 
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